Jeremy Côté

Bits, ink, particles, and words.

Integrating the Gaussian Function

As I take my first quantum mechanics class, I’ve come to find that integrating probability density functions are a pain. From only a few problems I’ve worked on, the integrals are long and tedious to do. If there’s a single theme present in these integrals, it’s the strategy of integrating by parts. However, I wanted to show a specific integration today, because it’s quite ingenious and allows one to integrate a function that would otherwise be very difficult.

Continue reading ⟶

The Sweet Spot

Despite what many schools actually do, I think most of us can agree that learning is highly personal. What works for you might not work for me, and there’s nothing wrong with that. Thankfully, there’s more than one way to learn a subject.

Continue reading ⟶

Linear versus Cyclic Permutations

One aspect of probability I’ve always found to be a little tricky is the part where you need to count things. In theory, this sounds easy enough. After all, it’s just looking at the complete list of things you’re studying, and enumerating them, right?

Continue reading ⟶

Period of a Pendulum

The pendulum is a classic physical object that is modeled in many introductory physics courses. It’s a nice system to study because it is so simple, yet still allows students to see how to study the motion of a system. Here, I want to do through the steps of deriving what is usually seen as an elementary result, the period of a pendulum, and show how it is actually more complicated than what most students see.

Continue reading ⟶